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In  the absence of molecular diffusion there exists a space-independent transformation 
which transforms the probability density of dynamically passive scalars undergoing 
chemical reaction and advection into the probability density of scalar fields under- 
going advection alone. In  two well-known limits the equation for the probability 
density of non-reacting scalars is linear and parabolic in physical space. In  such cases 
it is shown that the equation for the probability density of reacting scalars is likewise 
linear and parabolic in physical space, although hyperbolic in concentration space. The 
general solution of such an equation is obtained and the particular case of a second- 
order, decaying, single-species reaction is displayed. 

1. Introduction 
Probability density formulations of turbulence and turbulent transport have begun 

to receive more attention over the last decade, especially since Monin (1967) and 
Lundgren (1967) showed how to derive the equation for the multi-point density from 
the conservation equations of the velocity field and any advected species. Ievlev 
(1970) gives perhaps the most general statement of this methodology using the 
approach of Monin and Yaglom. Dopazo (1973), in the first specific application of the 
method to flows with advected chemically reacting species, noted that the species 
production-rate terms were closed in the probability density formulation and sug- 
gested that this may give the method a significant advantage over the traditional 
moment formulation, especially for nonlinear or temperature-sensitive reactions. 

The study of very rapid reactions by Toor (1962) led naturally to the use of prob- 
ability densities rather than moments in order to express an analogy between the 
advection of a dynamically passive reacting species and the advection of a passive 
contaminant. More recent papers by Lin & O’Brien (1974) and Bilger (1976) have 
extended this concept and shown that it can be a fruitful way to study reactive 
flows. 

In  this paper we display another advantage of the probability density method; 
namely, in the absence of molecular diffusion, there exists a transformation from the 
probability density associated with an advection-nonlinear reaction equation to the 
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probability density of a scalar field undergoing advection alone. The advection 
problem has been the focus of many studies ranging from formal limit theorems (see 
Popanicolaou & Kohler (1974) and references therein) through the exact white-noise 
velocity solution of Kraichnan (1968) to the influential asymptotic results of Taylor 
(1921). Multi-point studies of the same problem continue to play a major role in 
clarifying the statistical geometry of lines and surfaces in a turbulent fluid (Kraichnan 
1974). 

It is our purpose here to relate the transformation mentioned above to the existing 
literature on single-point passive-scalar transport so that the statistical properties of 
the former may be deduced from the known results for the latter when molecular 
diffusion of the scalar is not directly important. 

Unfortunately, molecular diffusion is rarely unimportant in turbulent diffusion 
problems (Batchelor & Townsend 1956) and the present inability to treat it satis- 
factorily by probability density methods (Hill 1976), or others (Saffman 1960), is 
a major barrier to progress, especially for reactive flows. For fast, diffusion-controlled 
reactions the structure of reaction zones and therefore the evolution of a reaction 
depends crucially on the role of molecular diffusion (Bilger 1976). In  such a case the 
transformation employed here will not be valid. For premixed reactants of moderate 
to slow rate compared with the advection time, where large-scale spatial inhomo- 
geneities predominate, it may be directly applicable. For example, in meteorological 
applications the apparently diffusive nature of turbulence often overwhelms true 
molecular diffusion, and if there exists a cloud of premixed reactants of moderate rate 
for which the ambient air is chemically inert, its transport and dilution by atmospheric 
turbulence may be adequately represented by this result. 

In  two limiting cases described in 0 3 our result takes the form of an eddy-diffusivity 
type of term for the advection. It is therefore connected with previous ad hoc approxi- 
mations for turbulent transport of the probability density (Kuznetsov & Frost 1973; 
O’Brien, Meyers & Benkovitz 1976) and gives them validity under the conditions 
of Q 3. Furthermore, in the literature on non-diffusive transport of scalar species, there 
exist several studies of chemically reacting species undergoing diffusion by continuous 
movements (Corrsin 1968; Riley 1973). This paper also presents an Eulerian descrip- 
tion of that situation for an arbitrary set of reactions. 

2. The advection-reaction probability density equation 

equations for each of m species: 
Consider the system of initial-value problems represented by the mass conservation 

where P(x, t )  is the concentration of the ith dynamically passive species at (x, t ) ,  
u(x, t) is the advecting, random, velocity field, f(x) is the initial (deterministic) con- 
centration and Ri represents the production-rate term for the ith species and is 
a deterministic function of the m variables I?, . . . , I ’m. To include non-isothermal (but 
still dynamically passive) effects we note that Fk might be an enthalpy and Rk the 
corresponding production-rate term (Dopazo 1973). 
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We seek to determine the probability density P ( x ,  t ,  f )  = P ( x ,  t ,  fl, . . . , f m )  of the 
process defined by (2.1) and to achieve this the fine-grained density 

is introduced (Lundgren 1967). p(x,  t )  is a measure on P space and as such it satisfies 
the differential equation (Brissaud & Frisch 1974) 

p(x, t ,  P) = 6[r(x, t )  - fi] 

Pt + u . V, p + Vp . (Rp) = 0, (2.2) 

where 

We introduce the fine-grained density p* for the non-reacting advection equation. Let - - .  

I I'* be the solution of r:+u.v,r* = 0, t 2 0, 

r*(x, 0 1  = f ( x ) .  

Then p*(x,  t ,  f )  = 6[I'*(x, t )  - fi] satisfies 

andp = p* a t  t = 0. 

of x and t ,  

pt*+u.vxp* = 0, t 2 0, (2.4) 

Define a linear operator A such that Ag = - V p  . (Rg). Then, since A is independent 

a(etap*)/at = A(etap*) +etAp: = - Ve. [R(etAp*)] - u. V,(etAp*). (2.5) 

Since p = p* = etAp* when t = 0, (2.2) and (2.5) imply that p = etAp* for all t 2 0. 
Let angle brackets symbolize the ensemble average and define P = ( p )  and P* = (p* ) .  
Then, since A is deterministic, 

P = etA(p*) = etAP*. (2.6) 

The transformation (2.6) represents a formal solution for the reactive advective 
probability density P in terms of solutions P* to the non-reactive advective problem 
with the same random velocity field and the same initial fine-grained density p(x ,  0, 2). 
The first important question to ask is whether solutions to P* exist or can be obtained. 
This matter is considered in the following pages. The second question should be con- 
cerned with the usefulness of the operator form (2.6) in solving turbulent advection of 
species which react according to complicated kinetic schemes. When P* satisfies an 
evolution equation ofthe form aP*/at + LP* = 0, where L is a linear operator involving 
only operations in physical space (i.e. no differentiation in time or concentration 
space), then P satisfies the equation 

ap/at + LP + vp. (RP) = 0. (2.7) 

This follows from (2.6) using a calculation similar to (2.5). In  the next section it is 
shown that P* satisfies a linear equation of the type aP*/at + LP* = 0 when (a) the 
turbulence is homogeneous and the time scale is much larger than the Lagrangian 
time scale of the turbulence or ( b )  the velocity-field correlation time is very short 
compared with the concentration-field circulation time. In  $ 4  we make use of (2.7) to 
calculate P explicitly in these two cases. 

Alternatively, one can view (2.6) as a numerical procedure for calculating P from 
a P* known empirically or otherwise. The question of convergence of the series 
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eta = X(tA)%/n! is not trivial. It is briefly considered in Meyers, O’Brien & Scott (1977) 
with particular application to a lognormal distrikution P*, for which ewP* is shown to 
have a finite radius of convergence in bothiand I?. In  addition a technique is described 
for calculating etAP* for all values of t and r, in spite of the finite radius of convergence. 

3. Probability density solutions of the advection equations 
The random-walk limit 

An important asymptotic result for the probability density of the displacement of a 
single fluid particle in homogeneous stationary turbulence has been given by Batchelor 
(1952) and Roberts (1961), both of whom extended the pioneering analysis of Taylor 
(1921). 

The probability density describing a process in which a fluid particle which is at a a t  
time to will be at x at time t is 

24x9 t ;  a, t o )  = (6rx - r (a ,  t ) l ) ,  

where r (a , t )  describes the trajectory of the particle and r(a, to)  = a.  Employing 
only mild constraints on the velocity-field statistics, Batchelor has shown that 
p ( x ,  t ;  a ,  to)  is asymptotically normal for times t much longer than the Lagrangian time 
scale of the advecting velocity field and he has computed the general particle-displace- 
ment covariance tensor, which is asymptotically linear in time. 

The importance ofp(x, t ;  a,  to )  for the purposes of this note is that it can be directly 
related to P*(x,  t ;  f )  in the following way: 

~ * ( x ,  t ,  to; f )  = 1 P*(a, to;  P) p(x, t ;  a, to )  da, 

where P*(a, to; f )  = (S[? - r ( a ,  t o ) ] )  and r ( a ,  to)  is the initial spatial distribution of r, 
which may be random but must be statistically independent of the advecting field u. 
For simplicity the dependence of the left-hand side of (3.1) on the initial time to will 
be suppressed. 

The proof of (3.1) uses the general relationship (O’Brien 1963; Hill 1976) 

P*(x,  t ;  8) = J (S[P - r ( a ,  t ) ]  6[x  - r (a ,  t ) ] )  da 

In Lagrangian co-ordinates the species advection equation (2.1) becomes 

aI?i(a,t)/at = 0. 

Hence P*(x, t ;  f )  = (a[? - r ( a ,  to ) ]  6[x - r(a,  t ) ] )da .  
When r (a , t0 )  is statistically independent of the advecting field u, (3.1) follows and 

P* can be computed from given initial concentration data and the behaviour of 

Several proposals can be found in the literature for evolution equations describing 
the behaviour of P(x, t ;  a, to)  where is an approximation t o p ,  The direct-interaction 
technique (Roberts 1961) produces the following result when the advecting field 
u(x, t )  is incompressible and its mean ( u ( x ,  t ) )  vanishes: 

P ( X 3  t ;  a, t o ) .  

a -  a 
aXi  3Xj  

dx’qj(x, t ;  x’, t ’ )  --p(x, t ;  x’,  to)  7 p ( ~ ’ ,  t ’ ;  a,  to) ,  (3.2) 
a 
at - P(x, t ;  a,  t o )  = 

where Uij(x, t ;  x’, t ’ )  = (u i (x ,  t )  uj(x‘,  t ’ )) .  
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Equation (3.2) is nonlinear, as is typical of ail other serious approximations (e.g. 
Bourret 1960), so it follows that neither P * ( x ,  t ;  r) nor P ( x ,  t ;  f )  will in general satisfy 
an equation analogous to (3.2). In  homogeneous flows for times very large compared 
with the time formed from the turbulence macroscale I ,  and the r.m.s. fluid velocity vo, 
i.e. t % l o v ~ l ,  Batchelor & Townsend (1956) have shown that 

is asymptotically Gaussian. 

Roberts (1961), who also proved that, in the limit t 

p (x , t ;  =p(x-a,t-tO) 

The same property holds for the homogeneous version of (3.2) as was shown by 
(3.2) becomes 

where 

is a constant eddy diffusivity. In  this limit, from (3. l), P* satisfies the linear equation 

aP*/at + K; azP*/ax, ax, = o 
and P obeys (2.7) with L given by KZ P/ax,  ax,. 

The rapid-JEuctwttion limit 

The limit theorems mentioned in the introduction (see Papanicolaou & Kohler 1974) 
lead directly to an equation for P*. Here we shall be content to describe the main 
result; for details, one may refer to Meyers et al. (1977). Consider the initial-value 
problem for the following mass conservation equation for one species: 

where E is a small positive parameter and (for convenience) ( u )  = 0. As E tends to zero, 
the velocity-field correlation time becomes infinitely short compared with the con- 
centration-field circulation time, and (3.3) is therefore related to Kraichnan’s (1968) 
condition for an exact solution for the scalar correlation function in a homogeneous 
field with white-noise advection. To derive a limit theorem, one must in addition 
impose a technical mixing condition on the velocity field u such that u(x,  t + 7) and 
~ ( y ,  t )  become independent sufficiently rapidly as 7 -+ 00 for all x and y (see the refer- 
ences above for details). The limit theorem is stated in terms of the solution F of the 
initial-value problem for the following deterministic scalar diffusion equation : 

where the notation F,i  means @/ax,, for example, and the summation convention 
holds. The coefficients aij and ,8k are given by the integral scales of the correlation 
functions : 

(3.5) 

aij(x) = 24 (U,(X, t )  U , ( X ,  O))dt, 
!ow 

P k ( x )  = 24Jom (Uk(X,t)V.U(X, 0))dt.  
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Finally, we come to the limit theorem, namely that, on time scales proportional to c2, 

Iim l(r)-Fl = 0. 
€-PO 

Here we have assumed that the velocity field u is statistically stationary because the 
limit theorem in the non-stationary case is much more complicated. 

Using the fact that P* = (p* ) ,  we can obtain a limit theorem for P* by analogy with 
the above results. Namely, in the limit e + 0 (or, equivalently, as the velocity field 
approaches the time-correlation narrowing condition of white noise), P* tends to the 
solution of the initial-value problem 

(3.7) I Pt* - $[(aij Pq) , ,  - p, P;k] = 0, t 2 0, 

P*(x, 0;  F) = 6[ f (x )  - f ] .  
Although the results above used deterministic initial data f ( x ) ,  it  can be shown (Meyers 
et al. 1977) that the above limit theorem remains valid if f ( x )  is itself random but 
statistically independent of the advection velocity u. The initial data for P* then 
become the probability density for the initial data f ( x ) .  Finally, from (3.7), it follows in 
this limit that P again satisfies (2.7) with LP given by 

4. Solution of the equation for the probability density 
We may summarize in the following way. Given initial data which are possibly non- 

deterministic (but statisticallyAindependent of u) with probability density Q(x, f,), 
the probability density P(x ,  t ,  I’) for the solution I’ of (2.1) satisfies, in both the limits 

where the meaning of aij and b, depends on the limit being invoked. 
Equation (4.1) preserves the segregated-species results for very rapid reaction in 

the absence of molecular diffusion, for example those derived by O’Brien (1971) for 
the case of two-species, one-step reactions, In  particular, it  yields limit solutions quite 
different from those obtained by approximating the concentrations in the production- 
rate terms by their mean values. 

The probability density evolves in both physical space and concentration space. 
These two effects proceed simultaneously but, because molecular diffusion has been 
neglected, they are independent of each other except for sharing the initial conditions. 
This suggests that (4.1) may be best solved by separating the behaviour in the two 
spaces and relating each to its state a t  the initial time when P ( x ,  t ,  f ) is described by the 
initial data &(x, Po). 

For the physical-space solution we suppose that we possess a Green’s kernel 
K ( x ,  y, t )  for the homogeneous problem 

(4.2) 
~ ~ Z ( ~ , t ) - a , ~ ( x , t ) ~ ~ ~ ( x , t ) - b , ~ , ( x , t )  = 0,  t 2 0,  

P(x,  0) = m, 
i.e. Jw, t )  = K ( x ,  Y, 1 dY. 
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For the concentration-space behaviour we adopt a Lagrangian description of the 

(4.3) I 6(t; f,) = R[f(t; Po)], t 0, 
reactive process: 

* A  A r(o; r,) = r,. 
If P(x, t ,  f )  is the solution of (4.1) with initial data &, we can define 

A A A  

F ( X ,  t; r,) P[X, t ,  r ( t ;  roll 
and straightforward use of (4.1) and (3.4) gives 

A 

Ft - aiiFis - b, F, = Pt + r . V p P - aiiPij - bk P , 
= -(Vi.;.R)P = -(Vp.R)P. (4.4) 

Now using the Green's kernel for (4.2), it follows that the solution of (4.4) is 

A A A  

If we invert the relation f = f(t; f,) to obtain ro = ro(I'; t )  we may write the solution 
of (4.1) as 

A 

We now give a closed-form solution for P(x, t ;  I?). Let m = I (one species) and let 
A 

R( f )  = - k P .  Then 
f ( t ;  f,) = I / ( f i l+k t ) ,  f ,  = l / ( P - l 4 t ) .  

A 

Therefore Vp.R = - 2 k r  
A A  A 

and 1: - ( v ~ . R ) [ F ( ~ ;  ro(r; t ) ) ] d s  = ln(i+ktr,)2 = ln(l-ktF)-2. 

P(x, t, f ) = (1 - k t f )+2f  K ( x ,  y, t)  &[y, f / (  1 - k t a ) ]  dy. Thus (4.6) 

The zero-diffusivity case for a single-species reaction was examined by Hill (1970). 
Equations (4.5) and (4.6) may be considered as the proper form, in the two limits 
of $3,  of his formal expression [his equation (4)] for the single-point probability 
density. The invariance properties discussed by Hill are therefore preserved in these 
limits. It also follows that an eddy-diffusivity representation of turbulent advection 
of scalar probability density will satisfy his zero-diffusivit9 invariance requirements. 
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